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Abstract—Big Data brought a lot of challenges that need to be 

solved. Such issues were targeted by many researchers and still 

an interesting field in the meantime. One important issue is to 

analyze big data frameworks and compromise this data and 

make it a tool for decision making. The big data needs more 

sophisticated analysis paradigm rather than those used to 

analyze traditional data due to the big data characteristics. 

Several approaches to big data analysis were proposed in the 

literature, those should be spotted are the approaches that take 

advantage of parallel processing due to its capability, promising,  

and remarkable results. A various implementations for 

MapReduce has been proven as a successful implementation. 

This research aims to discuss some of the current multi-GPU 

MapReduce frameworks for big data analysis considering the 

point of parallel data processing. In addition, various and 

comprehensive comparisons of those frameworks. 
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I. INTRODUCTION 
The recent few years have led to a new and solid 

definition of databases from traditional textual throughout 
object oriented databases to what so called big data. Big data 
term refers to datasets which cannot be acquired, perceived, 
processed and managed by traditional software, hardware and 
information technology tools within an acceptable amount of 
time [1]. Big data exhibit a variety of characteristics as 
volume, velocity, variety, variability and complexity [2]. 
With the dawn of the big data era, many technical challenges 
emerges [3] which are incompleteness, heterogeneity, scale, 
and timeliness. To handle such characteristics, efficient 
techniques emerge to analyze such data. 

The huge amounts of data generated as big data yields to 
new challenges and opportunities for data analysis. Valid big 
data analysis tends to be crucially important process due to 
the impact of data analysis in supporting decision in any field. 
There are two main goals for big data analysis [4] to 
determine the relationship between the response and features 

of scientific purposes to predict observations accurately about 
the future using effective methods. 

To address big data analytics, parallel architectures have 
been established lately. One of the most important parallel 
techniques to handle big data is MapReduce [5] developed by 
GOOGLE and due to the successful fact about its processing 
paradigm, many MapReduce frameworks have been 
proposed on parallel platforms such as multi-core systems 
[6]. Moreover, many researchers try to take advantage of the 
well-known graphical processing unit (GPU) due to its 
astonishing performance in parallel processing. GPU is used 
with big data analysis to increase the performance by 
decreasing execution time of MapReduce operations. Some 
of that work presented as a single-GPU frameworks [7, 8] and 
others present multi-GPU frameworks [9]. 

II. PRELIMINARY  

MapReduce [5] is a massive data sets parallel processing 
framework. A task undergoing MapReduce framework has 
two main phases which are:  

 Map: In this phase the mapper takes key/value pairs 
and performs computation, the output is an 
intermediate result represented as pairs of key/value.  

 Reduce: It takes the intermediate results and 
processes a reduce function to it.  

The mapper results are shuffled before they are reduced. 
Data as shown in Figure 1 is being processed using 
MapReduce through six functions [10] which are input 
reader, mapping, combiner, partition, reduce, and output 
writer. Basically, for a precise task, a map function is just 
needed strictly, despite the fact that most tasks also use a 
reduce function. The data source and destination determine 
the need for an input reader and output writer. The data 
distribution is responsible for determining the need to provide 
a partition and combiner functions. 

Parallelism is the computing trend nowadays since its 
success has been proven in real life regardless of the 
challenges associated with this concept. The modern effort in 
microprocessor development concentrates on the addition of 
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extra cores rather than focusing on enhancing the 
performance of a single-thread. The Graphics Processing 
Units (GPU) is a machine with many cores that is able to 
execute thousands of threads simultaneously. GPU is a highly 
parallel processing unit that is intended to perform a massive 

amount of computation that fulfills the computational needs 
for the demanding applications. Basically, GPU was designed 
for a specific types of applications with the thirst of 
computing resource characteristic. 

Figure 1. MapReduce algorithm execution  

III. RELATED WORK 

A design and an implementation of a parallel framework 
on GPU clusters is proposed [11]. This framework provides 
a set of APIs to help programmers on their own application 
such that each pipeline is programmed by developers, 
nevertheless a default implementations is provided. The 

framework uses a distributed file system (GlusterFS) in order 
to store data in a distributed manner and it was implemented 
using thrust, C++ and CUDA and it also considers a dynamic 
load balancing. The framework was implemented on Prestack 
Kirchhoff Time Migration (PKTM) for seismic to test the 
framework, which is made up from three main parts: Master, 
Mapper, and Reducer as shown in Figure 2.  

Figure 2. Framework work flow
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Each node (Master, Mapper, and Reducer) gets its job 
based on a job controller. The user specifies the strategy of 
data split and submit a job to Master, thus the data is split into 
chunks by the master and the master goes on and schedules 
jobs to each computing node. The master node is responsible 
for load balancing. The Mapper node has multiple GPUs, 
each GPU runs a specific task unit and generates a key-value 
intermediate pair sets are combined and partitioned. The 
reducer has its own task list where it keeps the received job 
unit, Reducers GPU download the job data from Mappers and 
start running job units. Test result on PKTM of seismic data 
shows an acceleration in performance over CPUs and one 
GPU. 

A multi-GPU MapReduce which is called MGMR [12] as 
Figure 3 shows is developed to utilize multiple GPUs and 
manage large-scale processing of data that cannot be handled 
by GPU memory. In MGMR framework, user can specify all 
phases and sub phases, and workers accomplish their job. The 
workers are hardware threads among GPUs in order to 
perform load balancing. In Map stage, output is shuffled 
between workers among GPUs without being passed to CPU 
memory. Workers with a single GPU are responsible for the 
communication. Workers with multiple GPUs uses 
GPUDirect which allow remote memory access for GPU with 
no need to be passed through CPU memory. Finally, the 
Reduce stage output of multiple GPUs is then copied to CPU 
memory.  

Figure 3. Single-round MGMR workflow 

An upgrade version of MGMR which is called a Pipelined 
Multi-GPU MapReduce system (PMGMR) [13] is proposed. 
PMGMR compromises hard disk utilization and the new 
GPU features such as Hyper-Q and streams to enhance the 
performance. A GPU gets a lot of enhancements, powerful 
GPUs emerges as NVIDA Kepler. To seize of Kepler 
advanced features such as Hyper Q and Asynchronous Dual-
channel Data Transfer, this work implements PMGMR for 
efficiency and to get more powerful multi GPUs framework.  

Since the Big Data size is growing rapidly the 
performance enhancement is not enough. So to handle such 
sizes this work introduces the Memory Hierarchy in MGMR 
idea and improve the ability to store a huge data sizes as well 
as the data transfer between processing units and disks is 
more efficient. PMGMR has three functional units which are 

a GPU operation scheduler, a configuration optimizer, and a 
job scheduler. 

MGMR++ is proposed [14] to eliminate the limitation of 
the pipelined and GPU memory. The MGMR++ uses flexible 
C++ templates as extension to MGMR and it is dedicated to 
NVIDIA Fermi family GPUs platform. It is implemented to 
maintain high utilization of multiple GPUs to be 
customizable and extensible. Load balancing among different 
GPUs is targeted at runtime based on job sizes and hardware 
performance.  

The communication is done through global shared GPU 
memory for a single GPU workers. In Multi GPUs workers, 
to achieve a better performance GPUDirect is used to allow 
remote access of GPU memory without the need to go in the 
CPU memory. If data size exceeds the total memory of 
multiple GPU in MGMR++, this can be handled through 
iterative GPU activations in in multi-round mode.  

MapReduce framework which is called MOIM [15] is an 
efficient utilization of parallelism in both multicore CPUs 
and GPUs, it minimizes delay by overlapping the 
computations of both CPU and GPU, and supports load 
balancing among mappers and reducers, also deals with data 
of both fixed and variable size.  

A new MapReduce framework is called GCMR [16] is 
proposed to accelerate processing of large data on a GPU 
cluster. The GCMR is implemented using CUDA and MPI 
and it is based on two parallelization levels schema which are 
the inter node and intra node levels. A multi-threading 
pipeline is used to increase the efficiency by overlapping data 
communication and computation between the CPU and the 
GPU. GCMR framework consists of four main stages which 
are splitting input, mapping, shuffling, and reducing. 

A GPU MapReduce framework which is called GMRF 
[17] is designed to be a solution for running MapReduce 
operations that can be parallelizable in the GPU environment. 
The aim of GMRF is to integrate the framework with 
MapReduce applications such Hadoop that can process a 
large amount of data efficiently using the high capabilities of 
GPU. GMRF is designed to be generic so the user can 
implement only the operations of MapReduce model and the 
framework will handle all operations related to GPU 
programming using OpenCL library. GMRF supports 
different types of data: text, vector, matrix and (key, value). 

GMRF is consisting of one master node and several slave 
nodes. JopTracker in master node controls the cluster by 
scheduling many slave nodes whereas TaskTracker in slave 
node manages the input/output data and starts the GPU 
controller which establishes the connection between GPU 
MapReduce module and Hadoop. The input data is allocated 
to slave node and if the all input files can be stored in the GPU 
memory then the input files can be processed in a single step 
operation, otherwise the input files will be grouped by the 
GPU Controller and will be processed in several steps by 
GPU MapReduce module. The output is stored temporarily 
in a file and then all results will be grouped by the Combiner. 
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In reducing task, the intermediate data is stored in the GPU 
memory and processed in order to reduce the number of keys 
and resulting (key, value). 

IV. ANALYSIS AND COMPARISON 

The MGMR does not support load balance especially 
when shuffling intermediate pairs to reducers because it takes 
only the advantage of multi-GPUs in a single machine where 
PMGMR, MGMR++, and MOIM frameworks support load 
balancing between cluster nodes. Table 1 illustrates a 
comparison among most important frameworks.  

Data transfer between CPU and GPU is considered to be 
a bottleneck in many applications based on GPU, so 
overlapping is an important schema to increase execution 
time by minimizing the time of communication between CPU 
and GPU, in PMGMR and MGMR++ pipelined data path 
maximizes the GPU usage using CUDA streams, the MOIM 
supports pipelining by overlapping computations of CPU and 
GPU, GCMR also supports overlapping using multi-
threading scheme, whereas MGMR does not support 
overlapping since it focuses on GPU utilization without 
taking into account CPU cores. The GMRF resolves the 
bottleneck of communication by proposing a model to use 
GPU shared memory efficiently. Moreover results show that 
PMGMR, MGMR++,  schemes increase scalability of the 
system compared to MGMR and over performs with about 
2.5-fold improvement in performance, and enable users to 
write a better big data code in MapReduce. 

TABLE I: A comparison among multi-GPU MapReduce FRAMEWORKS 

Framework No. GPU Benchmarks Communication 

MGMR 

2 GPUs (Tesla 

C2070 and 
Quadro 6000) 

K-Means Clustering 

(KMC) and Unique 
Phrase Pattern 

(UPP) 

OpenMP 

PMGMR 

4 GPUs (2 Tesla 

C2050 and 2 
Tesla K20Xm) 

K-Means Clustering 

(KMC) 

GPUDirect 

MGMR++ 

2 GPUs (Tesla 

C2070 and 
Quadro 6000) 

K-Means Clustering 

(KMC) and Unique 
Phrase Pattern 

(UPP) 

OpenMP 

MOIM 

12 GPUs PNY 

GeForce 
GTX580 (3GPUs 

per node) 

Matrix 

Multiplication (MM) 
& Word Count 

(WC) 

MPI 

GCMR 

8 GPUs Tesla 

c1060 (2 GPUs 
per node) 

Matrix 

Multiplication 
(MM), String Match 

(SM) & Word Count 

(WC) 

MPI 

GMRF 

 

- 

Matrix 

Multiplication (MM) 

& Word Count 
(WC) 

 

- 

V. CONCLUSION 

The analysis of data with big data is one of the major 
issues and address trend for researchers. Moreover, the size 
of such data is growing rapidly, so there is a need for models 
and frameworks to handle this kind of data in an efficient 
manner. MapReduce is a successful technique used widely to 
analyze big data, MapReduce has several implementations to 
prove the soundness of this platform. According to the fact 
that GPU capabilities are more powerful than CPUs, this 
survey targets MapReduce algorithms that compromise 
multi-GPUs architecture in the state of art to give an insight 
to those algorithms.  
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