
INTERNATIONAL JOURNAL OF ADVANCED STUDIES
IN COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOULME 5 ISSUE 11 2016

11/30/2016

www.ijascse.org

Big Data Analysis Techniques using Multi-GPUs

MapReduce Implementations

Belal Zaqaibeh
Department of Computer Science,

Applied Science University (ASU),

Al-Ekir, Bahrain

e-mail: zaqaibeh@asu.edu.bh

Islam Obaidat and Wegdan Hussien
Department of Computer Science,

Jordan University of Science and Technology (JUST),

Irbid, Jordan

e-mail: iamobaidat@gmail.com, wegdan200@gmail.com

Abstract—Big Data brought a lot of challenges that need to be

solved. Such issues were targeted by many researchers and still

an interesting field in the meantime. One important issue is to

analyze big data frameworks and compromise this data and

make it a tool for decision making. The big data needs more

sophisticated analysis paradigm rather than those used to

analyze traditional data due to the big data characteristics.

Several approaches to big data analysis were proposed in the

literature, those should be spotted are the approaches that take

advantage of parallel processing due to its capability, promising,

and remarkable results. A various implementations for

MapReduce has been proven as a successful implementation.

This research aims to discuss some of the current multi-GPU

MapReduce frameworks for big data analysis considering the

point of parallel data processing. In addition, various and

comprehensive comparisons of those frameworks.

Keywords- Big Data; MapReduce; GPU; Mapper; Reducer; multi-

GPU frameworks

I. INTRODUCTION
The recent few years have led to a new and solid

definition of databases from traditional textual throughout
object oriented databases to what so called big data. Big data
term refers to datasets which cannot be acquired, perceived,
processed and managed by traditional software, hardware and
information technology tools within an acceptable amount of
time [1]. Big data exhibit a variety of characteristics as
volume, velocity, variety, variability and complexity [2].
With the dawn of the big data era, many technical challenges
emerges [3] which are incompleteness, heterogeneity, scale,
and timeliness. To handle such characteristics, efficient
techniques emerge to analyze such data.

The huge amounts of data generated as big data yields to
new challenges and opportunities for data analysis. Valid big
data analysis tends to be crucially important process due to
the impact of data analysis in supporting decision in any field.
There are two main goals for big data analysis [4] to
determine the relationship between the response and features

of scientific purposes to predict observations accurately about
the future using effective methods.

To address big data analytics, parallel architectures have
been established lately. One of the most important parallel
techniques to handle big data is MapReduce [5] developed by
GOOGLE and due to the successful fact about its processing
paradigm, many MapReduce frameworks have been
proposed on parallel platforms such as multi-core systems
[6]. Moreover, many researchers try to take advantage of the
well-known graphical processing unit (GPU) due to its
astonishing performance in parallel processing. GPU is used
with big data analysis to increase the performance by
decreasing execution time of MapReduce operations. Some
of that work presented as a single-GPU frameworks [7, 8] and
others present multi-GPU frameworks [9].

II. PRELIMINARY

MapReduce [5] is a massive data sets parallel processing
framework. A task undergoing MapReduce framework has
two main phases which are:

 Map: In this phase the mapper takes key/value pairs
and performs computation, the output is an
intermediate result represented as pairs of key/value.

 Reduce: It takes the intermediate results and
processes a reduce function to it.

The mapper results are shuffled before they are reduced.
Data as shown in Figure 1 is being processed using
MapReduce through six functions [10] which are input
reader, mapping, combiner, partition, reduce, and output
writer. Basically, for a precise task, a map function is just
needed strictly, despite the fact that most tasks also use a
reduce function. The data source and destination determine
the need for an input reader and output writer. The data
distribution is responsible for determining the need to provide
a partition and combiner functions.

Parallelism is the computing trend nowadays since its
success has been proven in real life regardless of the
challenges associated with this concept. The modern effort in
microprocessor development concentrates on the addition of

mailto:iamobaidat@gmail.comý

INTERNATIONAL JOURNAL OF ADVANCED STUDIES
IN COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOULME 5 ISSUE 11 2016

11/30/2016

www.ijascse.org

extra cores rather than focusing on enhancing the
performance of a single-thread. The Graphics Processing
Units (GPU) is a machine with many cores that is able to
execute thousands of threads simultaneously. GPU is a highly
parallel processing unit that is intended to perform a massive

amount of computation that fulfills the computational needs
for the demanding applications. Basically, GPU was designed
for a specific types of applications with the thirst of
computing resource characteristic.

Figure 1. MapReduce algorithm execution

III. RELATED WORK

A design and an implementation of a parallel framework
on GPU clusters is proposed [11]. This framework provides
a set of APIs to help programmers on their own application
such that each pipeline is programmed by developers,
nevertheless a default implementations is provided. The

framework uses a distributed file system (GlusterFS) in order
to store data in a distributed manner and it was implemented
using thrust, C++ and CUDA and it also considers a dynamic
load balancing. The framework was implemented on Prestack
Kirchhoff Time Migration (PKTM) for seismic to test the
framework, which is made up from three main parts: Master,
Mapper, and Reducer as shown in Figure 2.

Figure 2. Framework work flow

INTERNATIONAL JOURNAL OF ADVANCED STUDIES
IN COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOULME 5 ISSUE 11 2016

11/30/2016

www.ijascse.org

Each node (Master, Mapper, and Reducer) gets its job
based on a job controller. The user specifies the strategy of
data split and submit a job to Master, thus the data is split into
chunks by the master and the master goes on and schedules
jobs to each computing node. The master node is responsible
for load balancing. The Mapper node has multiple GPUs,
each GPU runs a specific task unit and generates a key-value
intermediate pair sets are combined and partitioned. The
reducer has its own task list where it keeps the received job
unit, Reducers GPU download the job data from Mappers and
start running job units. Test result on PKTM of seismic data
shows an acceleration in performance over CPUs and one
GPU.

A multi-GPU MapReduce which is called MGMR [12] as
Figure 3 shows is developed to utilize multiple GPUs and
manage large-scale processing of data that cannot be handled
by GPU memory. In MGMR framework, user can specify all
phases and sub phases, and workers accomplish their job. The
workers are hardware threads among GPUs in order to
perform load balancing. In Map stage, output is shuffled
between workers among GPUs without being passed to CPU
memory. Workers with a single GPU are responsible for the
communication. Workers with multiple GPUs uses
GPUDirect which allow remote memory access for GPU with
no need to be passed through CPU memory. Finally, the
Reduce stage output of multiple GPUs is then copied to CPU
memory.

Figure 3. Single-round MGMR workflow

An upgrade version of MGMR which is called a Pipelined
Multi-GPU MapReduce system (PMGMR) [13] is proposed.
PMGMR compromises hard disk utilization and the new
GPU features such as Hyper-Q and streams to enhance the
performance. A GPU gets a lot of enhancements, powerful
GPUs emerges as NVIDA Kepler. To seize of Kepler
advanced features such as Hyper Q and Asynchronous Dual-
channel Data Transfer, this work implements PMGMR for
efficiency and to get more powerful multi GPUs framework.

Since the Big Data size is growing rapidly the
performance enhancement is not enough. So to handle such
sizes this work introduces the Memory Hierarchy in MGMR
idea and improve the ability to store a huge data sizes as well
as the data transfer between processing units and disks is
more efficient. PMGMR has three functional units which are

a GPU operation scheduler, a configuration optimizer, and a
job scheduler.

MGMR++ is proposed [14] to eliminate the limitation of
the pipelined and GPU memory. The MGMR++ uses flexible
C++ templates as extension to MGMR and it is dedicated to
NVIDIA Fermi family GPUs platform. It is implemented to
maintain high utilization of multiple GPUs to be
customizable and extensible. Load balancing among different
GPUs is targeted at runtime based on job sizes and hardware
performance.

The communication is done through global shared GPU
memory for a single GPU workers. In Multi GPUs workers,
to achieve a better performance GPUDirect is used to allow
remote access of GPU memory without the need to go in the
CPU memory. If data size exceeds the total memory of
multiple GPU in MGMR++, this can be handled through
iterative GPU activations in in multi-round mode.

MapReduce framework which is called MOIM [15] is an
efficient utilization of parallelism in both multicore CPUs
and GPUs, it minimizes delay by overlapping the
computations of both CPU and GPU, and supports load
balancing among mappers and reducers, also deals with data
of both fixed and variable size.

A new MapReduce framework is called GCMR [16] is
proposed to accelerate processing of large data on a GPU
cluster. The GCMR is implemented using CUDA and MPI
and it is based on two parallelization levels schema which are
the inter node and intra node levels. A multi-threading
pipeline is used to increase the efficiency by overlapping data
communication and computation between the CPU and the
GPU. GCMR framework consists of four main stages which
are splitting input, mapping, shuffling, and reducing.

A GPU MapReduce framework which is called GMRF
[17] is designed to be a solution for running MapReduce
operations that can be parallelizable in the GPU environment.
The aim of GMRF is to integrate the framework with
MapReduce applications such Hadoop that can process a
large amount of data efficiently using the high capabilities of
GPU. GMRF is designed to be generic so the user can
implement only the operations of MapReduce model and the
framework will handle all operations related to GPU
programming using OpenCL library. GMRF supports
different types of data: text, vector, matrix and (key, value).

GMRF is consisting of one master node and several slave
nodes. JopTracker in master node controls the cluster by
scheduling many slave nodes whereas TaskTracker in slave
node manages the input/output data and starts the GPU
controller which establishes the connection between GPU
MapReduce module and Hadoop. The input data is allocated
to slave node and if the all input files can be stored in the GPU
memory then the input files can be processed in a single step
operation, otherwise the input files will be grouped by the
GPU Controller and will be processed in several steps by
GPU MapReduce module. The output is stored temporarily
in a file and then all results will be grouped by the Combiner.

INTERNATIONAL JOURNAL OF ADVANCED STUDIES
IN COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOULME 5 ISSUE 11 2016

11/30/2016

www.ijascse.org

In reducing task, the intermediate data is stored in the GPU
memory and processed in order to reduce the number of keys
and resulting (key, value).

IV. ANALYSIS AND COMPARISON

The MGMR does not support load balance especially
when shuffling intermediate pairs to reducers because it takes
only the advantage of multi-GPUs in a single machine where
PMGMR, MGMR++, and MOIM frameworks support load
balancing between cluster nodes. Table 1 illustrates a
comparison among most important frameworks.

Data transfer between CPU and GPU is considered to be
a bottleneck in many applications based on GPU, so
overlapping is an important schema to increase execution
time by minimizing the time of communication between CPU
and GPU, in PMGMR and MGMR++ pipelined data path
maximizes the GPU usage using CUDA streams, the MOIM
supports pipelining by overlapping computations of CPU and
GPU, GCMR also supports overlapping using multi-
threading scheme, whereas MGMR does not support
overlapping since it focuses on GPU utilization without
taking into account CPU cores. The GMRF resolves the
bottleneck of communication by proposing a model to use
GPU shared memory efficiently. Moreover results show that
PMGMR, MGMR++, schemes increase scalability of the
system compared to MGMR and over performs with about
2.5-fold improvement in performance, and enable users to
write a better big data code in MapReduce.

TABLE I: A comparison among multi-GPU MapReduce FRAMEWORKS

Framework No. GPU Benchmarks Communication

MGMR

2 GPUs (Tesla

C2070 and
Quadro 6000)

K-Means Clustering

(KMC) and Unique
Phrase Pattern

(UPP)

OpenMP

PMGMR

4 GPUs (2 Tesla

C2050 and 2
Tesla K20Xm)

K-Means Clustering

(KMC)

GPUDirect

MGMR++

2 GPUs (Tesla

C2070 and
Quadro 6000)

K-Means Clustering

(KMC) and Unique
Phrase Pattern

(UPP)

OpenMP

MOIM

12 GPUs PNY

GeForce
GTX580 (3GPUs

per node)

Matrix

Multiplication (MM)
& Word Count

(WC)

MPI

GCMR

8 GPUs Tesla

c1060 (2 GPUs
per node)

Matrix

Multiplication
(MM), String Match

(SM) & Word Count

(WC)

MPI

GMRF

-

Matrix

Multiplication (MM)

& Word Count
(WC)

-

V. CONCLUSION

The analysis of data with big data is one of the major
issues and address trend for researchers. Moreover, the size
of such data is growing rapidly, so there is a need for models
and frameworks to handle this kind of data in an efficient
manner. MapReduce is a successful technique used widely to
analyze big data, MapReduce has several implementations to
prove the soundness of this platform. According to the fact
that GPU capabilities are more powerful than CPUs, this
survey targets MapReduce algorithms that compromise
multi-GPUs architecture in the state of art to give an insight
to those algorithms.

REFERENCES

[1] M. Chen, S. Mao, Y. Zhang, V. Leung. “Big data: related technologies,
challenges and future prospects,” Cham: Springer, 2014.

[2] A. Katal, M. Wazid, RH Goudar. “Big data: Issues, challenges, tools and
good practices,” In Contemporary Computing (IC3), 2013 Sixth
International Conference on, pages 404-409. IEEE, 2013.

[3] N. Ammu, M. Irfanuddin. “Big Data Challenges,” International Journal
of Advanced Trends in Computer Science and Engineering, Vol.2,
No.1, Pages: 613 – 615, 2013.

[4] Bickel, P. Discussion on the paper ‘Sure independence screening for
ultrahigh dimensional feature space’ by Fan and Lv. J Roy Stat Soc B
2008; 70: 883–4.

[5] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Communications of ACM, 51:107–113, 2008.

[6] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis.
Phoenix++: Modular MapReduce for Shared-Memory Systems. In
International Workshop on MapReduce and its Applications, 2011.

[7] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang. Mars: a
MapReduce Framework on Graphics Processors. In International
Conference on Parallel Architectures and Compilation Techniques,
2008.

[8] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin. MapCG: Writing
Parallel Program Portable between CPU and GPU. In International
Conference on Parallel Architectures and Compilation Techniques,
2010.

[9] J. A. Stuart and J. D. Owens. Multi-GPU MapReduce on GPU Clusters.
In IEEE International Parallel and Distributed Processing Symposium,
2011.

[10] Dean, J., Ghemawat, S.: MapReduce: simplified data processing on
large clusters. In: Proceedings of USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2004.

[11] Heng Gao, Jie Tang, Gangshan Wu, "A MapReduce Computing
Framework Based on GPU Cluster," IEEE Conference, High
Performance Computing and Communications & Embedded and
Ubiquitous Computing, pages 1902-1907, 2013.

[12] Yi Chen, Zhi Qiao, Hai Jiang, Kuan-Ching Li, Won Woo Ro, “MGMR:
Multi-GPU MapReduce on GPU Clusters,” Grid and Pervasive
Computing. Lecture Notes in Computer Science, vol. 7861, pp. 433–
442. Springer, Berlin, 2013.

[13] Yi Chen, Zhi Qiao, Spencer Davis, Hai Jiang, Kuan-
Ching Li, “Pipelined Multi-GPU MapReduce for Big-
Data Processing,” Computer and Information Science
Studies in Computational Intelligence Volume 493, pp 231-246, 2013.

[14] Hai Jiang, Yi Chen, Zhi Qiao, Tien-Hsiung Weng, Kuan-Ching Li,
“Scaling up MapReduce-based Big Data Processing on Multi-GPU
systems,” Cluster Computing, Volume 18, Issue 1, pp 369-383, 2015.

INTERNATIONAL JOURNAL OF ADVANCED STUDIES
IN COMPUTER SCIENCE AND ENGINEERING
IJASCSE VOULME 5 ISSUE 11 2016

11/30/2016

www.ijascse.org

[15] Mengjun Xie; Kyoung-Don Kang; Basaran, C., "Moim: A Multi-GPU
MapReduce Framework," Computational Science and Engineering
(CSE), 2013 IEEE 16th International Conference on , vol., no.,
pp.1279,1286, 3-5 Dec. 2013.

[16] Yiru Guo; Weiguo Liu; Gong, B.; Voss, G.; Muller-Wittig, W.,
"GCMR: A GPU Cluster-Based MapReduce Framework for Large-
Scale Data Processing," High Performance Computing and
Communications & 2013 IEEE International Conference on Embedded
and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th
International Conference on, vol., no., pp.580,586, 13-15 Nov. 2013.

[17] Nitu, R.; Apostol, E.; Cristea, V., "An improved GPU MapReduce
framework for data intensive applications," Intelligent Computer
Communication and Processing (ICCP), 2014 IEEE International
Conference on , vol., no., pp.355,362, 4-6 Sept. 2014.

